Convergence properties of the Runge-Kutta-Chebyshev method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Runge-Kutta-Chebyshev projection method

In this paper a fully explicit, stabilized projection method called the Runge-Kutta-Chebyshev (RKC) Projection method is presented for the solution of incompressible Navier-Stokes systems. This method preserves the extended stability property of the RKC method for solving ODEs, and it requires only one projection per step. An additional projection on the time derivative of the velocity is perfo...

متن کامل

Runge – Kutta – Chebyshev projection method q

In this paper a fully explicit, stabilized projection method called the Runge–Kutta–Chebyshev (RKC) projection method is presented for the solution of incompressible Navier–Stokes systems. This method preserves the extended stability property of the RKC method for solving ODEs, and it requires only one projection per step. An additional projection on the time derivative of the velocity is perfo...

متن کامل

Stability and B-convergence properties of multistep Runge-Kutta methods

This paper continues earlier work by the same author concerning the stability and B-convergence properties of multistep Runge-Kutta methods for the numerical solution of nonlinear stiff initial-value problems in a Hilbert space. A series of sufficient conditions and necessary conditions for a multistep Runge-Kutta method to be algebraically stable, diagonally stable, Bor optimally B-convergent ...

متن کامل

A fourth-order Runge–Kutta method based on BDF-type Chebyshev approximations

In this paper we consider a new fourth-order method of BDF-type for solving stiff initial-value problems, based on the interval approximation of the true solution by truncated Chebyshev series. It is shown that the method may be formulated in an equivalent way as a Runge–Kutta method having stage order four. Themethod thus obtained have good properties relatives to stability including an unboun...

متن کامل

Some Properties of Symplectic Runge-kutta Methods

We prove that to every rational function R(z) satisfying R(−z)R(z) = 1, there exists a symplectic Runge-Kutta method with R(z) as stability function. Moreover, we give a surprising relation between the poles of R(z) and the weights of the quadrature formula associated with a symplectic Runge-Kutta method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 1990

ISSN: 0029-599X,0945-3245

DOI: 10.1007/bf01386405